Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
iScience ; 26(6): 106802, 2023 Jun 16.
Article in English | MEDLINE | ID: covidwho-2307469

ABSTRACT

Breastmilk contains antibodies that could protect breastfed infants from infections. In this work, we examined if antibodies in breastmilk could neutralize SARS-CoV-2 in 84 breastmilk samples from women that were either vaccinated (Comirnaty, mRNA-1273, or ChAdOx1), infected with SARS-CoV-2, or both infected and vaccinated. The neutralization capacity of these sera was tested using pseudotyped vesicular stomatitis virus carrying either the Wuhan-Hu-1, Delta, or BA.1 Omicron spike proteins. We found that natural infection resulted in higher neutralizing titers and that neutralization correlated positively with levels of immunoglobulin A in breastmilk. In addition, significant differences in the capacity to produce neutralizing antibodies were observed between both mRNA-based vaccines and the adenovirus-vectored ChAdOx1 COVID-19 vaccine. Overall, our results indicate that breastmilk from naturally infected women or those vaccinated with mRNA-based vaccines contains SARS-CoV-2 neutralizing antibodies that could potentially provide protection to breastfed infants from infection.

2.
Mol Nutr Food Res ; 66(16): e2200071, 2022 08.
Article in English | MEDLINE | ID: covidwho-1885425

ABSTRACT

SCOPE: Lack of information about the impact of maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the elemental and metabolomic profile of human milk (HM). METHODS AND RESULTS: An observational study on HM from mothers with COVID-19 is conducted including a prepandemic control group. Maternal-infant clinical records and symptomatology are recorded. The absolute quantification of elements and untargeted relative metabolomic profiles are determined by inductively coupled plasma mass spectrometry and gas chromatography coupled to mass spectrometry, respectively. Associations of HM SARS-CoV-2 antibodies with elemental and metabolomic profiles are studied. COVID-19 has a significant impact on HM composition. COVID-19 reduces the concentrations of Fe, Cu, Se, Ni, V, and Aluminium (Al) and increases Zn compared to prepandemic control samples. A total of 18 individual metabolites including amino acids, peptides, fatty acids and conjugates, purines and derivatives, alcohols, and polyols are significantly different in HM from SARS-CoV-2 positive mothers. Aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine, and linoleic acid pathways are significantly altered. Differences are obtained depending on COVID-19 symptomatic and asymptomatic status. CONCLUSIONS: This study provides unique insights about the impact of maternal SARS-CoV-2 infection on the elemental and metabolomic profiles of HM that warrants further research due the potential implications for infant health.


Subject(s)
COVID-19 , Milk, Human , Female , Gas Chromatography-Mass Spectrometry , Humans , Infant , Milk, Human/chemistry , Mothers , Phenylalanine/analysis , Phenylalanine/metabolism , SARS-CoV-2
3.
Nutrients ; 14(10)2022 May 19.
Article in English | MEDLINE | ID: covidwho-1862859

ABSTRACT

Breastfeeding is key for infant development and growth. Breast milk contains different bioactive compounds including antibodies. Recent studies have demonstrated the presence of breast milk SARS-CoV-2 antibodies after maternal infection and vaccination. However, the potential impact on the infant has not been explored yet. As a first step, we aimed at assessing the potential persistence of SARS-CoV-2 IgA and IgG antibodies from infected and vaccinated women in the gastrointestinal tract of the infants by means of an in vitro-simulated gastrointestinal digestion approach. Breast milk samples from 10 lactating women receiving mRNA vaccination against SARS-CoV-2 (n = 5 with BNT162b2 mRNA and n = 5 with mRNA-1273) and also, COVID-19 infected (n = 5) were included. A control group with women with no exposure to the virus (n = 10 pre-pandemic) were also studied. The presence of IgA and IgG SARS-CoV-2 antibody levels was determined by ELISA after the gastric and intestinal stages. The impact of digested antibodies on infant gut microbiota was tested by simulating colonic fermentation with two different fecal inoculums: infants from vaccinated and non-vaccinated mothers. Specific gut microbial groups were tested by targeted qPCR. In vitro infant gastrointestinal digestion significantly decreased the levels of both anti-SARS-CoV-2 IgA and IgG. However, both remained resistant in all the study groups except in that evaluating breast milk samples from infected women, in which IgG was degraded below the cut-off values in the intestinal phase. No effect of the antibodies on microbiota were identified after digestion. In conclusion, antibody levels against SARS-CoV-2 are reduced after in vitro-simulated gastrointestinal tract but remain present, so a positive biological effect could be expected from this infant immunization pathway.


Subject(s)
COVID-19 , Milk, Human , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Child , Digestion , Female , Humans , Immunoglobulin A , Immunoglobulin G , Infant , Lactation , RNA, Messenger , SARS-CoV-2
4.
Genome Med ; 14(1): 42, 2022 04 21.
Article in English | MEDLINE | ID: covidwho-1799094

ABSTRACT

BACKGROUND: Breast milk is a vehicle to transfer protective antibodies from the lactating mother to the neonate. After SARS-CoV-2 infection, virus-specific IgA and IgG have been identified in breast milk, however, there are limited data on the impact of different COVID-19 vaccine types in lactating women. This study is aimed to evaluate the time course of induction of SARS-CoV-2-specific IgA and IgG in breast milk after vaccination. METHODS: In this prospective observational study in Spain, 86 lactating women from priority groups receiving the vaccination against SARS-CoV-2 were included. Breast milk samples were collected longitudinally at seven or eight-time points (depending on vaccine type). A group with confirmed SARS-CoV-2 infection (n=19) and a group of women from pre-pandemic time (n=20) were included for comparison. RESULTS: Eighty-six vaccinated lactating women [mean age, 34.6 ± 3.7 years] of whom 96% were Caucasian and 92% were healthcare workers. A total number of 582 milk samples were included, and vaccine distribution was BioNTech/Pfizer (BNT162b2, n=34), Moderna (mRNA-1273, n=20), and AstraZeneca (ChAdOx1 nCoV-19, n=32). For each vaccine, 7 and 8 longitudinal time points were collected from baseline up to 30 days after the second dose for mRNA vaccines and adenovirus-vectored vaccines, respectively. A strong reactivity was observed for IgG and IgA after vaccination mainly after the 2nd dose. The presence and persistence of specific SARS-CoV-2 antibodies in breast milk were dependent on the vaccine type, with higher IgG and IgA levels in mRNA-based vaccines when compared to AstraZeneca, and on previous virus exposure. High intra- and inter-variability were observed, being relevant for IgA antibodies. In milk from vaccinated women, anti-SARS-CoV-2 IgG was significantly higher while IgA levels were lower than in milk from COVID-19-infected women. Women with previous COVID-19 increased their IgG antibodies levels after the first dose to a similar level observed in vaccinated women after the second dose. CONCLUSIONS: COVID-19 vaccination induced anti-SARS-CoV-2 IgA and IgG in breast milk with higher levels after the 2nd dose. Levels of anti-SARS-CoV-2 IgA and IgG are dependent on the vaccine type. Further studies are warranted to demonstrate the protective antibody effect against COVID-19 in infants from vaccinated and infected mothers. TRIAL REGISTRATION: NCT04751734 (date of registration is on February 12, 2021).


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Female , Humans , Immunoglobulin A , Immunoglobulin G , Infant , Infant, Newborn , Lactation , Longitudinal Studies , Milk, Human , Vaccination
6.
J Med Virol ; 93(12): 6803-6807, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544308

ABSTRACT

We evaluated the Panbio™ COVID-19 Ag Rapid Test Device as a point-of-care diagnostic tool for COVID-19 in 357 patients at a pediatric emergency department. Thirty-four patients tested positive by reverse transcription polymerase chain reaction, of which 24 were positive by the antigen assay. The sensitivity and specificity of the assay were 70.5% and 100%, respectively.


Subject(s)
Antigens, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , SARS-CoV-2/immunology , COVID-19 Nucleic Acid Testing/methods , COVID-19 Serological Testing/methods , Child , Child, Preschool , Emergency Service, Hospital , Female , Humans , Immunologic Tests/methods , Infant , Male , Nasopharynx/immunology , Nasopharynx/virology , Point-of-Care Testing , Prospective Studies , Sensitivity and Specificity
8.
Arch Dis Child Fetal Neonatal Ed ; 107(2): 216-221, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1367412

ABSTRACT

OBJECTIVES: To develop and validate a specific protocol for SARS-CoV-2 detection in breast milk matrix and to determine the impact of maternal SARS-CoV-2 infection on the presence, concentration and persistence of specific SARS-CoV-2 antibodies. DESIGN AND PATIENTS: This is a prospective, multicentre longitudinal study (April-December 2020) in 60 mothers with SARS-CoV-2 infection and/or who have recovered from COVID-19. A control group of 13 women before the pandemic were also included. SETTING: Seven health centres from different provinces in Spain. MAIN OUTCOME MEASURES: Presence of SARS-CoV-2 RNA in breast milk, targeting the N1 region of the nucleocapsid gene and the envelope (E) gene; presence and levels of SARS-CoV-2-specific immunoglobulins (Igs)-IgA, IgG and IgM-in breast milk samples from patients with COVID-19. RESULTS: All breast milk samples showed negative results for presence of SARS-CoV-2 RNA. We observed high intraindividual and interindividual variability in the antibody response to the receptor-binding domain of the SARS-CoV-2 spike protein for each of the three isotypes IgA, IgM and IgG. Main Protease (MPro) domain antibodies were also detected in milk. 82.9% (58 of 70) of milk samples were positive for at least one of the three antibody isotypes, with 52.9% of these positive for all three Igs. Positivity rate for IgA was relatively stable over time (65.2%-87.5%), whereas it raised continuously for IgG (from 47.8% for the first 10 days to 87.5% from day 41 up to day 206 post-PCR confirmation). CONCLUSIONS: Our study confirms the safety of breast feeding and highlights the relevance of virus-specific SARS-CoV-2 antibody transfer. This study provides crucial data to support official breastfeeding recommendations based on scientific evidence. Trial registration number NCT04768244.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Milk, Human/immunology , Adult , Antibodies, Viral/analysis , Coronavirus Envelope Proteins/analysis , Coronavirus Nucleocapsid Proteins/analysis , Female , Humans , Immunoglobulins/analysis , Longitudinal Studies , Phosphoproteins/analysis , Prospective Studies , RNA, Viral/analysis , SARS-CoV-2 , Spain
9.
Clin Microbiol Infect ; 27(12): 1858.e1-1858.e7, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1347551

ABSTRACT

OBJECTIVES: Studies comparing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA load in the upper respiratory tract (URT) between children and adults-who either presented with coronavirus disease 2019 (COVID-19) or were asymptomatic-have yielded inconsistent results. Here, we conducted a retrospective, single-centre study to address this issue. PATIENTS AND METHODS: Included were 1184 consecutive subjects (256 children and 928 adults) testing positive for SARS-CoV-2 RNA in nasopharyngeal exudates (NPs); of these, 424 (121 children and 303 adults) had COVID-19 and 760 (135 children and 625 adults) were asymptomatic close contacts of COVID-19 patients. SARS-CoV-2 RNA testing was carried out using the TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, MS, USA). The AMPLIRUN® TOTAL SARS-CoV-2 RNA Control (Vircell SA, Granada, Spain) was used for estimating SARS-CoV-2 RNA loads (in copies/mL). SARS-CoV-2 RNA loads at the time of laboratory diagnosis (single specimen/patient) were used for comparison purposes. RESULTS: Median initial SARS-CoV-2 RNA load was lower (p 0.094) in children (6.98 log10 copies/mL, range 3.0-11.7) than in adults (7.14 log10 copies/mL, range 2.2-13.4) with COVID-19. As for asymptomatic individuals, median SARS-CoV-2 RNA load was comparable (p 0.97) in children (6.20 log10 copies/mL, range 1.8-11.6) and adults (6.48 log10 copies/mL, range 1.9-11.8). Children with COVID-19 symptoms displayed SARS-CoV-2 RNA loads (6.98 log10 copies/mL, range 3.0-11.7) comparable to those of their asymptomatic counterparts (6.20 log10 copies/mL, range 1.8-11.6) (p 0.61). Meanwhile in adults, median SARS-CoV-2 RNA load was significantly higher in symptomatic (7.14 log10 copies/mL, range 2.2-13.4) than in asymptomatic subjects (6.48 log10 copies/mL, range 1.9-11.8) (p < 0.001). Overall, the observed URT SARS-CoV-2 RNA clearance rate was faster in children than in adults. CONCLUSIONS: Based on viral load data at the time of diagnosis, our results suggest that SARS-CoV-2-infected children, with or without COVID-19, may display NP viral loads of comparable magnitude to those found in their adult counterparts. However, children may have shorter viral shedding than adults.


Subject(s)
COVID-19 , Nasopharynx/virology , RNA, Viral , SARS-CoV-2 , Viral Load , Adult , Asymptomatic Infections , COVID-19/diagnosis , Child , Humans , RNA, Viral/isolation & purification , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL